Broué’s abelian defect group conjecture (1988). Let p be a prime, and let \mathcal{O} be a complete discrete valuation ring whose residue field k is a field of characteristic p such that k is big enough for a finite group G. Assume that A is a block algebra of $\mathcal{O}G$ with a defect group P and that A_N is a block algebra of $\mathcal{O}N_G(P)$ which is the Brauer correspondent of A, where $N_G(P)$ is the normalizer of P in G. Now, if P is abelian, then A and A_N should be derived equivalent, namely,

$$D^b(\text{mod-}A) \cong D^b(\text{mod-}A_N).$$
Theorem. (J. Müller-F. Noeske-S. Koshitani)
Broué's abelian defect group conjecture holds for all primes p and for all block algebras of O_G if $G = \text{Co}_3$, where O is a complete discrete valuation ring whose residue field is of characteristic p and big enough for G.

Proposition (F. Noeske). If A is a 2-block of a sporadic finite simple group G such that A is faithful and its defect group P is abelian but is neither cyclic nor Klein four-group, then A is a unique non-principal 2-block of Co_3 and the defect group P is elementary abelian of order 8. To prove Broué's abelian defect group conjecture for Co_3, "relative-projective covers" and "relative-projective Heller operators" do work well.

There are important papers on this subject:

Well-known Lemma.
Let G be a finite group and H a subgroup of G, and let A and B be respectively block algebras of kG and kH with a common defect group P, where k is a field of characteristic $p > 0$ and big enough for G and H. If M is an (A, B)-bimodule such that M is a direct summand of $kG \otimes kG_{kH}$ and that M induces a stable equivalence between mod-A and mod-B, then, M preserves vertices and sources.

Theorem. (J. Müller-F. Noeske-S. Koshitani)
Let $G = {	ext{Co}}_3$ and let A be a non-principal block algebra of kG with defect group $P = C_2 \times C_2 \times C_2$, where k is a field of characteristic 2 and big enough. Let H be a maximal subgroup of G with $H = R(3) \times S_3 \supseteq N_G(P)$, where $R(3) = 2G_2(3) \cong SL_2(8) \rtimes C_3$ is the smallest Ree group. Let B be a block algebra of kH which is the Brauer
correspondent of A. Set $M = f(A)$, where f is the Green correspondence for $(G \times G, \Delta P, G \times H)$. Then, M induces a Morita equivalence between A and B, and hence it is a Puig equivalence.

Let $G = \text{Co}_3$ and let A be a non-principal block algebra of kG with defect group $C_2 \times C_2 \times C_2$, where k is a field of characteristic 2 and big enough. Moreover, let $R(q) = ^2G_2(q)$ be a Ree group, where $q = 3^{2n+1}$ for any integer $n \geq 0$, Then, A and $B_0(kR(q))$ are Puig equivalent for all $q = 3, 3^3, 3^5, 3^7, \ldots$, where $B_0(kR(q))$ is the principal block algebra of $kR(q)$.

Thank you very much for your attention and

Jacques,

Happy Birthday to You!